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Theory of a slow-light catastrophe

Ulf Leonhardt
School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, Scotland
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In diffraction catastrophes such as the rainbow, the wave nature of light resolves ray singularities and draws
delicate interference patterns. In quantum catastrophes such as the black hole, the quantum nature of light
resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. This paper
describes the theory behind a recent proposal@U. Leonhardt, Nature~London! 415, 406 ~2002!# to generate a
quantum catastrophe of slow light.
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I. INTRODUCTION

Catastrophes@1# are at the heart of many fascinating o
tical phenomena. The most prominent example of suc
catastrophe is the rainbow. Light rays from the Sun en
water droplets floating in the air. After two refractions a
one reflection inside each drop the rays reach an obse
Above a critical observation angle no rays arrive, wher
below the angle two rays strike the observer. A bright bo
the rainbow, appears at the critical angle, because here
cross section of light rays diverges@2#. ~The critical angle
depends on the refractive index that varies with the f
quency of light in dispersive media such as water, giving r
to the rainbow colors.! The direction of a light ray is propor
tional to the gradient of the phase. The rainbow thus rep
sents a singularity of a gradient map, a catastrophe in
sense of Thom@3# and Arnol’d @4#. Structurally stable singu
larities of gradient maps fall into distinct classes, depend
on the number of control parameters involved@3,4#. Struc-
tural stability is the key to Nature’s way of focusing light@5#
in the caustics created by ray catastrophes. Yet the w
nature of light smoothens the harsh singularities of rays.
multaneously, characteristic interference effects appear.
example, the pairs of light rays below the rainbow creat
delicate pattern of supernumerary arcs@1# that are visible
under favorable weather conditions~when the floating drop-
lets are nearly uniform in size@2#!. Every class of diffraction
catastrophes generates its distinct interference structure@1#.

Catastrophe optics describes the wave properties of
singularities. In the hierarchy of physical concepts, wave
tics refines and embraces ray optics, and quantum op
rules above wave optics. So, what would be the quan
effects of wave catastrophes@6#? First, what are quantum
catastrophes? It might be a good idea to begin with an
ample, the black hole@7#. When a star collapses to a blac
hole an event horizon is formed, cutting space into two d
connected regions. Seen from an outside observer,
stands still at the horizon, freezing all motion. A light wa
would freeze as well, propagating with ever-shrinking wav
length. In mathematical terms@8#, a monochromatic light
wave of frequencyv oscillates asQ(r 2r s)(r 2r s)

im when
the radiusr approaches the horizonr s , with m52r sv/c. A
logarithmic phase singularity will develop. Potential qua
tum effects of such a wave singularity are effects of
quantum vacuum. The gravitational collapse@7# of the star
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into the black hole has swept along the vacuum. The vacu
thus shares the fate of an inward-falling observer. Yet s
an observer would not notice anything unusual at the ev
horizon. In mathematical terms, the vacuum modes are a
lytic across the horizon@8,9#. On the other hand, the mode
perceived by an outside observer are essentially nonanal
because they vanish beyond the horizon where the obse
has no access. Consequently, the observer does not se
electromagnetic field in the vacuum state. Instead, the
server notices the quanta of Hawking radiation@10# with the
Planck spectrum (e2pm21)21. The quantum vacuum doe
not assume catastrophic waves of the typeQ(r 2r s)(r
2r s)

im, hence resolving so the associated wave singula
and, simultaneously, generating quantum radiation with
characteristic spectrum. At the heart of such a catastro
lies a time-dependent process, for example, the gravitatio
collapse in the case of the black hole@7#. The process has
disconnected the spatial regions where waves can propa
and has created a logarithmic phase singularity at the in
face. Any time-dependent phenomenon will generate so
radiation for as long as the process lasts. In remarkable c
trast, a quantum catastrophe creates quanta continuousl

This paper describes the theory behind a recent idea@11#
to generate a quantum catastrophe of slow light@12–17,21#.
An experiment is proposed based on electromagnetically
duced transparency~EIT! @17#. In EIT a control beam deter
mines the optical properties of slow light in a suitable m
dium. Changing the intensity of the control light from
uniform to a parabolic profile creates a slow-light catast
phe @11#, see Fig. 1. This catastrophe resembles the ev
horizon of a black hole, but shows some characteristic
ferences also. In Sec. II we put forward a rather gene
phenomenological quantum field theory of slow light. A
pendix A justifies the theory for the most common method
slow down light using EIT@17#. In Sec. III we address the
specific theory of the slow-light catastrophe@11#. Appendix
B contains some estimations that are relevant to the exp
mental aspects involved. Section IV summarizes the res
and draws a further vision of quantum catastrophes.

II. THE MODEL

EIT @17# has served as a method to slow down light s
nificantly @12# or, ultimately, to freeze light completely@13–
16#. Like other successful techniques, EIT is based on
©2002 The American Physical Society18-1
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ULF LEONHARDT PHYSICAL REVIEW A 65 043818
simple idea@17#: A control beam of laser light couples th
upper levels of an atom, and, in this way, the beam stron
modifies the optical properties of the atom. In particular,
coupling of the excited states affects the transition from
atomic ground state to one of the upper states, i.e., the ab
of the atom to absorb probe photons with matching transi
frequency. Destructive quantum interference between
paths of the transition process turns out to eliminate abs
tion at exact resonance@17#. A medium composed of suc
optically manipulated atoms is transparent at a spectral
where it would otherwise be completely opaque. In the
cinity of the transparency frequencyv0 the medium is highly
dispersive, i.e., the refractive index changes within a nar
frequency interval. In turn, probe-light pulses with a carr
frequencyv0 travel with a very low group velocityvg @18#.
The intensityI c of the control beam determines the gro
velocity of the probe pulse, as long asI c is stronger than the
probe. Paradoxically, the lower theI c is, the slower the pulse
moves, which, however, is only possible when the electro
states of the atoms follow dynamically the control field@19#,
causing the probe-light intensity to fall accordingly@19#. In
this regime light freezes whenI c vanishes@13–16#.

The theory of EIT@17# often employs an atomic three
level scheme: Two levels account for the excited sta
coupled by the control field and one level represents
ground state, see Appendix A. In reality, atoms are m
complicated and, when details matter, an accurate descrip
involves the full atomic sublevel structure@20#. Here we put
forward a phenomenological quantum theory of slow lig
that is rather independent of the microscopic mechani
used in practice. We assume only that the slow-light med

FIG. 1. Schematic diagram of the proposed experiment. A be
of control light with intensityI c generates electromagnetically in
duced transparency@15# in a medium, strongly modifying its optica
properties for a second field of slow light. When an initially un
form control intensity is turned into the parabolic profile shown
the figure, the slow-light field suffers a quantum catastrophe.
slow-light waves, the interfaceZ of zero control intensity cuts
space into two disconnected regions and creates a logarithmic p
singularity, in analogy to the effect@7# of an event horizon@6#. The
quantum vacuum of slow light cannot assume such catastro
waves. In turn, pairs of slow-light quanta, propagating in oppo
directions away fromZ, are emitted with a characteristic spectru
The waves shown below the intensity profile refer to the emit
light with the modeswR andwL of Eq. ~50!.
04381
ly
e
e
ity
n
e

p-

e
-

w
r

ic

s
e
e
on

t
s

m

is transparent with a real susceptibility that depends linea
on the detuning fromv0 . In EIT our model is restricted to
the narrow transparency window aroundv0 that can maxi-
mally reach the natural linewidth of the atomic transitio
Appendix A shows that our model agrees with the three-le
theory of EIT. Our theory is simple enough to be treat
analytically and yet sufficiently complex to capture the e
sence of slow-light quanta. We postulate an effective L
grangianL, show thatL is consistent with the known dy
namics of EIT within the validity range of our mode
calculate the energy, and quantize the field of slow-light p
laritons. Our approach has the additional advantage th
may be applicable to other mechanisms@21# for creating
slow light, which do not rely on EIT.

A. Lagrangian

We characterize slow light by a real scalar fieldw ignor-
ing the polarization. The optical fieldw shall be given in
units of the vacuum noise@22#. For simplicity, we assume
uniformity in two spatial directions,x andy, and regard the
optical field as a function of timet and positionz. Through-
out this paper we denote partial time derivatives by dots,
differential operators] t , or simply by subscriptst, which-
ever happens to be most convenient. Spatial derivatives
denoted by dashes, differential operators]z , or subscriptsz.
We postulate the effective Lagrangian

L5
\

2
@~11a!ẇ22c2w822av0

2w2#. ~1!

We see in the following section that the real parameter fu
tion a determines the group velocity, and hence we calla the
group index. In EIT@17# the parametera is inversely pro-
portional to the control-field intensity,

a~ t,z!5
k

I c~ t,z!
, ~2!

with a coupling strengthk that is proportional to the modulu
squared of the atomic dipole-transition matrix element and
the number of atoms per unit volume. Without the EIT m
dium present,L is the Lagrangian of a free electromagne
field, («0/2)(E22c2B2) with fixed polarization. We see tha
w is related to the electric-field strengthE in SI units by

E5S \

«0
D 1/2

vw, ~3!

wherev denotes the frequency of light and«0 is the electric
permittivity of the vacuum.

In order to motivate the Lagrangian~1! we consider the
corresponding Euler-Lagrange equation@23#

] t

dL

dẇ
1]z

dL

dw8
5

dL

dw
, ~4!

which leads to the wave equation

@] t~11a!] t2c2]z
21av0

2#w50. ~5!
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THEORY OF A SLOW-LIGHT CATASTROPHE PHYSICAL REVIEW A65 043818
This is the propagation equation of slow light based on
traditional three-level model, see Appendix A, but the eq
tion holds on more general grounds: Equation~5! describes
light in media with linear spectral susceptibility. Assumin
that the optical field oscillates at much shorter time a
length scales than any variations ofa, we replacei ] t by the
frequencyv and 2 i ]z by the wave numberk. We arrive at
the dispersion relation

k22
v2

c2 2a
~v1v0!~v2v0!

c2 50, ~6!

which, in the positive transparency window nearv0 , agrees
with

k22
v2

c2 ~11x!50 ~7!

and the linear spectral susceptibility@18,24#

x5
2a

v0
~v2v0!. ~8!

At a later stage we need to consider negative frequencie
well. To verify that the dispersion relation~6! is also valid in
the corresponding negative transparency window we uti
the general property of a spectral susceptibility

x~2v!5x* ~v!, ~9!

which implies that near2v0 ,

x52
2a

v0
~v1v0!. ~10!

We see that as long as the frequency of the probe light
within the transparency windows of EIT, the Lagrangian~1!
reproduces the typical linear slope of the spectral susce
bility. In fact, up to a trivial prefactor,L is the only Lagrang-
ian that is quadratic in the field and its derivatives and tha
consistent with the spectral susceptibilities~8! and ~10!.
Therefore we regardL as a suitable Lagrangian for slo
light.

B. Dynamics

The ability to freeze light by turning off the control fiel
depends crucially on the dynamics of the process. Consid
time-dependent group indexa without significant spatial
variations. In this case slow light is dominated by oscil
tions within an optical wavelength and an optical cycle. W
express the wave as

S \

«0
D 1/2

vw5Eeikz2 ivt1c.c., k5
v

c
, ~11!

with the slowly varying electric-field amplitudeE in SI units.
We approximate

S \

«0
D 1/2

ve2 ikz1 ivtẅ'~2v222iv] t!E,
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S \

«0
D 1/2

ve2 ikz1 ivtẇ'2 ivE,

S \

«0
D 1/2

ve2 ikz1 ivtw9'~2k212ik] t!E, ~12!

and get from the wave equation~5!

22iv~11a!Ė
'@~11a!v21 ivȧ2c2k212ikc2]z2av0

2#E
5@2ivc]z1 ivȧ1a~v22v0

2!#E

52ivS cE81
ȧ

2
ED ~13!

when the carrier frequencyv is equal to the transparenc
resonancev0 . We apply the relation~2! between the control-
field intensityI c and the group indexa, write I c as the square
of the field strengthEc , and obtain, finally,

Ė1cE852a Ė2
ȧ

2
E52

k

Ec
] t

E
Ec

. ~14!

This is exactly the propagation equation of slow light in t
adiabatic and perturbative limit@Eq. ~9! of Ref. @19# with the
Rabi frequencyV being proportional toEc#. Consequently,
the Lagrangian~1! has codified naturally the correct dynam
regime including theȧE/2 term that describes reversib
stimulated Raman scattering@19#.

In order to understand the principal behavior of ordina
slow-light pulses, consider the case of a spatially uniform
time-dependent group index. Equation~14! has the solution

E~ t,z!5E0S z2E vgdtDAvg /c ~15!

in terms of the velocity@24#

vg5
c

11a
. ~16!

We see that the pulse envelopeE propagates with the spee
vg called group velocity. When the group velocity changes
time, the intensityuEu2 reacts proportionally. The ratio be
tween the control~2! and the pulse intensity~15!, (I c
1k)/uE0u2, remains large, even in the limit of a vanishin
control field whenvg vanishes as well, as long ask is large
~for a sufficiently dense medium!. The spectral spread of
pulse is reduced byvg /c and a standing pulse oscillates ju
with the carrier frequency. In this regime slow light does n
leave the transparency window of EIT@14#. One can freeze
light without losing control@13,14#.
8-3
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ULF LEONHARDT PHYSICAL REVIEW A 65 043818
C. Energy

After having gained confidence in our field-theoretical a
proach, we use the Lagrangian~1! to calculate the energy
balance of slow light. According to Noether’s theorem@23#
we obtain the energy density

I 5
dL

dẇ
ẇ2L5

\

2
@~11a!ẇ21c2w821av0

2w2# ~17!

and the energy flux~Poynting vector!

P5
dL

dw8
ẇ52\c2ẇw8. ~18!

The energy balanceI t1Pz is then, as a consequence of t
wave equation~5!,

I t1Pz5
\ȧ

2
~ ẇ21v0

2w2!. ~19!

Temporal changes in the control field, modifying the gro
index ~2!, do not conserve energy. In fact, the experiment
@13# indicates that the control beam can amplify light stor
in an EIT medium with zero group velocity. In the expe
ment of @13#, slow light enters the EIT sample and is the
frozen inside by turning off the control field. Switching o
the control releases the stored light. The pulse emerges
an intensity that depends on the control field and that m
exceed the initial intensity, in agreement with Eq.~15!.
Clearly, this phenomenon is only possible if energy is inde
transferred from the control beam to the probe light.

D. Polaritons

Finally, we realize the full potential of the Lagrangian~1!
in setting up an effective quantum theory of slow light. T
classical canonical momentum density of the fieldw is
@23,25#

dL

]ẇ
5\~11a!ẇ. ~20!

We quantize the field by regardingw anddL/dẇ as Hermit-
ian operatorsŵ andp̂, respectively, with the canonical com
mutation relations@23,25#

@ŵ~ t,z!,ŵ~ t,z8!#5@p̂~ t,z!,p̂~ t,z8!#50,

@ŵ~ t,z!,p̂~ t,z8!#5 i\d~z2z8!. ~21!

Let us decompose the fieldŵ into modes with dimensionles
mode indicesq

ŵ~ t,z!5E @aquq~ t,z!1âq
†uq* ~ t,z!#dq. ~22!
04381
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In order to guarantee thatŵ satisfies the wave equation~5!
the mode functionsuq are required to obey Eq.~5! as well.
The uq shall be normalized according to

~uq ,uq8!5d~q2q8!, ~uq ,uq8
* !50, ~23!

with the Klein-Gordon-type scalar product@23,25#

~w1 ,w2!5 i E
2`

1`

@w1* ẇ22ẇ1* w2#~11a!dz. ~24!

The scalar product is chosen such that it remains cons
during the propagation ofw1 andw2 ,

] t~w1 ,w2!5 i E
2`

1`

@w1* ] t~11a!ẇ22w2] t~11a!ẇ1* #dz

5 ic2E
2`

1`

]z~w1* w282w2w1* 8!dz50. ~25!

Using these postulates and definitions we calculate the c
mutation relation of the mode operators

@ âq ,âq8
†

#52~uq ,ŵ !~uq8
* ,ŵ !1~uq8

* ,ŵ !~uq ,ŵ !

5E
2`

1`

~uq* ŵ t2ŵu̇q* !~11a!dz

3E
2`

1`

~uq8ŵ t2ŵu̇q8!~11a!dz8

2E
2`

1`

~uq8ŵ t2ŵu̇q8!~11a!dz8

3E
2`

1`

~uq* ŵ t2ŵu̇q* !~11a!dz

5
1

\ E
2`

1`E
2`

1`

$uq* u̇q8@ŵ~z8!,p̂~z!#@11a~z8!#

2u̇q* uq8@ŵ~z!,p̂~z8!#@11a~z!#%dzdz8

5 i E
2`

1`

~uq* u̇q82u̇q* uq8!~11a!dz

5d~q2q8!. ~26!

In a similar way we prove that

@ âq ,âq8#50. ~27!

Consequently, and in agreement with the spin-statistics th
rem @23#, slow light consists of bosons. Let us express
total energy~18! in terms of the annihilation and creatio
operatorsâq andâq

† . Consider the case of a stationary gro
index a when the total energy is conserved. We obtain af
partial integration, via the wave equation~5! for the field
operators,
8-4
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THEORY OF A SLOW-LIGHT CATASTROPHE PHYSICAL REVIEW A65 043818
E
2`

1`

T̂00dz5
\

2 E
2`

1`

@~11a!~] tŵ !22c2ŵ]z
2ŵ1av0

2ŵ2#dz

5
\

2 E
2`

1`

@~] tŵ !22ŵ] t
2ŵ#~11a!dz. ~28!

We employ the mode expansion~22! with the norm~23! with
respect to the scalar product~24!, use the commutation rela
tion ~26!, and find, finally,

E
2`

1`

T̂00dz5E \vS âq
†âq1

1

2Ddq. ~29!

Consequently, the annihilation and creation operatorsâq and
âq

† refer indeed to the energy quanta of slow light. The q
siparticles of light in a dielectric medium are called pola
tons in analogy to the optical excitations in a solid@26#. They
combine characteristic features of free photons with
properties of the dipole oscillations of the atoms constitut
the medium. When light is slowed down photons turn in
atomic excitations that, after acceleration, may emerge
photons again@13,14#. The polariton picture contains implic
itly the correct bookkeeping of the photonic and atomic fe
tures of light in linear media.

One can use similar arguments as in the section on
dynamics of slow light to prove that the proposed polarit
theory is consistent with the adiabatic three-level model@19#.
Yet our approach is not restricted to a regime dominated
spatial oscillations of the form exp(ivz/c), see Eq.~11!,
which is in essence the regime of geometrical optics@27#.
One can easily relax this unnecessary constraint of the th
level theory, because the electromagnetic response o
atom is local, as long as the wavelength of light is lar
compared with the size of the atom. The adiabatic polari
theory@19# is, as ours, restricted to a narrow frequency ran
with respect to time, i.e., to the transparency window of
electromagnetically manipulated medium. Yet this restrict
in frequency does not exclude rapid spatial oscillations
yond the scale of the wavelength in vacuum, 2pc/v. We
will see in the following section that such oscillations occ
near a spatial singularity of the group index. In this situat
our quantum field theory of slow-light polaritons turns into
perfect tool for analyzing the quantum physics of a wa
catastrophe.

III. THE CATASTROPHE

Imagine that the control beam illuminates the EIT m
dium from above. Initially, the control intensity is uniform
but then the control light develops a dark node that contin
as an interfaceZ of zero intensityI c through a part of the
medium. One could use computer-generated hologram
achieve this situation, similar to the generation of Laguer
Gaussian beams@28#. Suppose that the interface is suf
ciently flat and cuts deep enough into the medium to jus
our model.~We have assumed uniformity in the two spat
directions x and y that are parallel to the interface. Mo
probably, uniformity over a few wavelengths would suffice!
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Near a zero in the intensity, the control-field strength m
grow linearly. Consequently,I c depends quadratically onz
and, according to the relation~2!, the group indexa forms a
quadratic singularity where the group velocity~16! vanishes,

a5
a2

z2 . ~30!

The parametera sets the scale of the group-index profile. W
assume that the spatial profile~30! of the group index ex-
tends over a sufficiently long range. For simplicity, we co
sider a one-dimensional model where the slow light pro
gates in thez direction only. Appendix B generalizes ou
results to a realistic three-dimensional situation. Apart fro
these idealizations and from the physics captured in our
grangian~1!, we make no further approximations.

A. Horizon

At a node of the control field the group velocity of th
probe light vanishes. Therefore we would expect that
wave packet of slow light can pass the interfaceZ. Consider
slow light subject to the wave equation~5! with the group-
index profile~30!. We represent a wavew(t,z) as

w5Azf ~31!

and find

@z2] t
21a2~] t

21v0
2!2c2~z]zz]z2

1
4 !#f50. ~32!

We could multiplyf by step functionsU(6z) and still get
solutions of the wave equation~32!, because

z]zQ~6z!f~z!5Q~6z!z]zf~z!6f~z!zd~z!

5Q~6z!z]zf~z!. ~33!

Consequently, waves on different sides ofZ are independen
of each other. As long as slow light is concerned, the int
faceZ has cut space into two disconnected parts.

Consider monochromatic probe light oscillating with fr
quencyv. In this case the wave equation~32! reduces to
Bessel’s differential equation@29# with the index

n5A1

4
2a2~k22k0

2!. ~34!

Herek abbreviatesv/c andk0 refers tov0 /c. So, in math-
ematical terms, the monochromatic waves of slow light
products of a square root with Bessel functions@29#,

w5AzJ6n~kz!e2 ivt. ~35!

Depending on the detuning of the frequencyv with respect
to the exact transparency resonancev0 , two cases emerge
First, when 4a2(k22k0

2) is below unity the Bessel indexn is
real. We apply the asymptotics of the Bessel functions
large and positive argumentsr @29#,
8-5



se
en
all
ity
o

a
gi

th

n
r-
e
e
th
d

ym
e
tte
th
us

gh

th

o

a
s
a
tw
n

re

ed

we

they

-

on

s

ULF LEONHARDT PHYSICAL REVIEW A 65 043818
Jn~r!;
1

A2pr
FexpS ir2 in

p

2
2 i

p

4 D
1expS 2 ir1 in

p

2
1 i

p

4 D G . ~36!

We see that in the far field the light waves with real Bes
indices are in a perfectly balanced superposition of incid
and emerging plane waves. In other words, the light is tot
reflected away from the interface of zero group veloc
similar to the reflection of radio waves at the Earth’s ion
sphere@30#.

A more interesting scenario appears in the second c
when the light is sufficiently blue detuned to evoke an ima
nary Bessel index

n5 im. ~37!

This regime can be reached by adjusting the gradient of
control field that plays a decisive role in Eqs.~2! and ~30!.
The smaller the gradient is the larger isa2. Therefore, a
sufficiently small control-field gradient gives rise to a
imaginary Bessel indexn, even within the narrow transpa
ency window in frequencyv5kc. On the other hand, as w
will see at a later stage, the gradient should be as larg
possible for producing a maximal quantum effect. When
Bessel indexn is imaginary the incident and the reflecte
waves are not balanced anymore, as we see from the as
totics ~36! of the Bessel functions. Only a fraction of th
incident wave is reflected and the rest must be transmi
somewhere. To find the transmitted wave, we focus on
behavior of the Bessel functions for small arguments. We
the first term in the power series@29#

Jim~z!;
1

~ im!! S z

2D im

, z5kz, z→0. ~38!

Therefore, near the interface of zero group velocity the li
waves are proportional to

z im11/25Az exp~ im ln z!5Az exp~ iS!. ~39!

The logarithmic phaseSreduces dramatically the waveleng
nearz50, because

l5
2p

Sz
5

2p

m
z. ~40!

The transmitted wave thus freezes in front of the interface
zero group velocity.

We regard a process that creates an interface where w
separate and develop a logarithmic phase singularity a
wave catastrophe. The gravitational collapse of a star into
black hole has created an horizon that cuts space into
disconnected parts as well@7#. Close to the event horizon, a
outside observer would see a similar behavior of waves@8#.
All motion freezes near the horizon of the hole, which, the
fore, has also been termed a frozen star@31#. In view of this
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analogy we regard the interface of zero group velocityZ as
the optical analog of a horizon.

B. Modes

Consider a superposition of sufficiently blue-detun
slow-light waves~35! with imaginary Bessel indices~37!. To
analyze the quantum effects of the horizon on polaritons,
must turn the waves into modes~22!, i.e., we must normalize
the wave functions according to the scalar product~24!.
Waves~35! with different wave numbersk are orthogonal to
each other and possess a continuous spectrum. Hence
should be normalized tod functions. We employ the ratio
k/k0 as the dimensionless mode indexq that occurs in the
scalar product~24!. The normalization factor is entirely de
termined by the way in which the norm~24! diverges to
reach thed singularity @32#. Consequently@32#, we can ig-
nore all finite, converging contributions to the normalizati
integral given by Eqs.~24!, ~30!, and~35!,

~w1 ,w2!5~v11v2!E
0

`

J6 im1
* ~k1z!J6 im2

~k2z!z

3S 11
a2

z2 Ddz. ~41!

The integral~41! diverges both atz50 and atz5`. We
account for the two divergences separately in the integralI 0
and I ` ,

~w1 ,w2!52v~ I 01I `!. ~42!

Ignoring any convergent contributions toI 0 , we cut off the
integral at some smallz0 , regardz(11a2/z2) as a2/z, and
use the asymptotics~38! near the origin,

I 05E
0

z0
J6 im1
* ~k1z!J6 im2

~k2z!
a2

z
dz

5
a2

u~ im!! u2 E
0

z0
z6 i ~m22m1!

dz

z

5sinh~pm!
a2

mp E
2`

ln z0
exp@6 i ~m22m1!j#dj

5sinh~pm!
a2

m
d~m22m1!5k21 sinh~pm!d~k12k2!.

~43!

In the last step we have utilized the fact thatm(]m/]k)
equalsa2k. Furthermore, we have used Eq. 1.2.~6! of Ref.
@33# for the gamma functionx![G(x11). Let us address
the other integral,
8-6



THEORY OF A SLOW-LIGHT CATASTROPHE PHYSICAL REVIEW A65 043818
I `5E
z`

`

J6 im1
* ~k1z!J6 im2

~k2z!zdz5
1

2pk Ez`

` FexpS 2 ik1z6m1

p

2
1 i

p

4 D1expS 1 ik1z7m1

p

2
2 i

p

4 D G
3FexpS 1 ik2z6m2

p

2
2 i

p

4 D1expS 2 ik2z7m2

p

2
1 i

p

4 D Gdz

5
1

2pk Ez`

` FexpS i ~k22k1!z6~m11m2!
p

2 D1expS i ~k12k2!z7~m11m2!
p

2 D Gdz5k21 cosh~pm!d~k12k2!. ~44!
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Combining the two integrals~43! and~44! gives in total@see
Eq. ~42!#

~w1 ,w2!52cepmd~k12k2!. ~45!

Consequently, in the spatial region right from the horiz
(z.0) the normalized wave functions are

uR
65

Q~z!

A2c
e2pm/2Ak0zJ6 im~kz!e2 ivt. ~46!

Left from the horizon (z,0) we chose for convenience,

uL
6~z!5uR

7~2z!. ~47!

The step functionQ in the definition~46! guarantees that th
u modes on different sides of the horizon do not overlap a
therefore, they are automatically orthogonal to each ot
However, the6 degenerated waves on the same side are
orthogonal. In fact, we obtain along similar lines as in t
normalization procedure,

~uR
1 ,uR

2!5e2pmd~q12q2!. ~48!

Yet we construct easily the orthogonal partnersw6 to theu7

waves,

wR
65

1

A12e22pm
~uR

62e2pmuR
7!,

wL
6~z!5wR

7~2z!. ~49!

We chose as the orthonormal basis in the mode expan
~22!

wR[wR
1 , uR[uR

2 , wL[wL
2 , uL[uL

1 . ~50!

Finally, to find an interpretation of thew modes, we use the
asymptotics~36! of the Bessel functions and get foruzu→`
on the appropriate sides of the horizon,

wR;S 12e22pm

4pcv/v0
D 1/2

expS 1 i
v

c
z2 ivt2 i

p

4 D ,

wL;S 12e22pm

4pcv/v0
D 1/2

expS 2 i
v

c
z2 ivt2 i

p

4 D . ~51!
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The asymptotics~51! show that thew modes turn into plane
waves propagating away from the horizon. In other wor
thew modes are those that reach an external photon dete

C. Analyticity

The stationary modes~50! of catastrophic slow light are
severely nonanalytic. The modes vanish on either the lef
the right side of the horizon with a characteristic essen
singularity as a precursor. Waves near the event horizon
black hole suffer a similar fate@8#. Seen from an outside
observer, the waves freeze near the Schwarzschild radiur s
with an essential singularity of the type (r 2r s)

im, wherem
52r sv/c @8#. Yet an observer falling into the hole would se
little difference in waves near the horizon and could pass
point of no return without noticing. Like the inward-falling
observer, the quantum vacuum flows towards the central
gularity of the hole and, similarly, the horizon should not
a special place for the vacuum either. In mathematical ter
the wave function of the vacuum is analytic@8,9#. Conse-
quently, the modes seen by the outside observer must no
in their vacuum states. In fact, they carry the quanta
Hawking radiation@10#. The history of the hole formation
during a gravitational collapse turns out to be responsible
the analyticity of the vacuum@8,9#. Inspired by the analogy
between a black hole and our slow-light catastrophe, le
consider the history of our horizon.

Suppose that the group indexa was initially a largely
uniform a0 . Then, by tuning the control field, the grou
index develops a quadratic singularity, for example,
a5a2(t)/@z21b2(t)# with a2(2`)→`, b2(2`)→`,
a2(2`)/b2(2`)→a0 , and finally b2(1`)→0. The de-
tails of the process do not matter. Immediately after a timetc
the group index will possess the quadratic singularity that
are studying, creating a slow-light catastrophe. Given a u
form group index as the initial condition and with no slow
light injected, the polariton vacuum occupies initially pac
ets of plane waves that we can sort into right- or le
traveling waves,

w65E A6~v!expS 6 i
z

c
Av21a0~v22v0

2!2 ivt Ddv.

~52!

Regarded as a function of complexz, the w6 waves are
analytic in the upper~1! or lower ~2! half plane, respec-
tively, because here the integral~52! converges. When the
control field creates a horizon the vacuum modes must
8-7
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low the wave equation~5!. We assume thata is analytic
apart from poles. Consider closed contour integrals in eit
one of the half planes. We obtain from the wave equation~5!,

] t R ~11a!w tdz5c2 R wzzdz2v0
2 R awdz. ~53!

Due to the analyticity of the initial wave packets~52! rwdz
and rw tdz were initially zero. Equation~53! indicates that
both integrals remain zero, as long asa is analytic. At single
poles ofa we getw t52v0

2w, which cannot generate a sin
gularity. Higher poles ofa do not contribute to the close
contour integrals. Consequently, the vacuum wave functi
are always analytic inz.

Consider the analytic properties of the vacuum wa
with respect to time. Picture a wave with positive freque
cies incident from the left, see Fig. 2. After the catastroph
part of the wave may freeze at the horizon and the res
reflected. If the wave happens to arrive during the format
of the horizon, a brief burst of light with negative freque
cies may be generated. However, in the stationary regime
are interested in, the reflected light contains always posi
frequencies. Therefore we regard the wave functionw(t,z)
on the left side of the horizon as analytic int on the lower
complex plane. Given an analytic signalw(t) at somez we
can propagate it in space according to the wave equation~5!
without loss in analyticity, but we cannot pass the horiz
because herea is singular. It is, therefore, conceivable th
beyond the horizonw(t) is not analytic anymore. In othe
words, w(t) may contain negative frequencies. In fact, w
show in the following section that negative frequencies
time are unavoidable for not running into conflict with th
analyticity in the spatial coordinatez. Waves propagating to

FIG. 2. Space-time diagram of a slow-light catastrophe. T
figure illustrates the fate of a wave packetw(t,z) that experiences
the formation of the horizonZ. Initially, the packet oscillates with
positive frequencies in timet and propagates from the left to th
right in spacez. The horizon cannot generate negative frequenc
in the reflected light, apart from a brief burst that we neglect. On
left side ofZ we thus regardw(t,z) as analytic int on the lower
half of the complext plane. Furthermore,w(t,z) is analytic inz on
the upper half plane throughout the history of the wave pac
because the process~5! conserves analyticity. Yetw(t,z) is not ana-
lytic in t on the other side of the horizon, as the solution~54!
indicates. Here waves with negative frequencies are continuo
peeling away from the horizon, corresponding to a stationary
ation of slow-light quanta.
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the right are analytic inz on the upper half plane and the
must have originated from a wave incident from the left. T
analytic properties of the vacuum waves in space are t
connected with their analytic properties in time. Analytici
in the upper half of thez plane is linked to analyticity int on
the left side and, using similar arguments; analyticity in t
lower half of thez plane goes hand in hand with analytici
in t on the right side. We utilize the analytic properties of t
vacuum waves in space and time as a marker for distingu
ing the vacuum modes.

D. Combinations

The vacuum states of slow-light polaritons are charac
ized by analytic wave functions inz. Therefore, to describe
the vacuum after the formation of the horizon, we shou
construct orthonormal combinationsv of the nonanalyticu
and w modes that are analytic on either the upper or
lower half of the complexz plane at some arbitrary timet0 .
The solution is

vR5
1

2
sech~pm!wL2 iwR2 ie22ivt0

1

2
sech~pm!wR* ,

vR
'5

1

A11e2pm
~uR1 iepmuL!,

vL5
1

2
sech~pm!wR2 iwL2 ie22ivt0

1

2
sech~pm!wL* ,

vL
'5

1

A11e2pm
~uL1 iepmuR!. ~54!

Because theu andw modes are orthonormal with respect
the scalar product~24!, one can easily verify that thev
modes form an orthonormal set as well.

The modes~54! are given on the realz axis and are sub-
ject to analytic continuation. We prove that thevR and vR

'

modes are analytic on the upper half plane and that thevL

andvL
' modes are analytic on the lower half plane. First,

use the definitions~49! and~50!, and writevR andvL in the
form

2 cosh~pm!A12e22pmvR

5uL
22 ie1pm@~11e22pm!uR

12e22pmuR
2* e22ivt0#

2e2pm@uL
12 ie2pm$~11e12pm!uR

2

2e12pmuR
1* e22ivt0%#,

2 cosh~pm!A12e22pmvL

5uR
12 ie1pm@~11e22pm!uL

22e22pmuL
1* e22ivt0#

2e2pm@uR
22 ie2pm$~11e12pm!uL

1

2e12pmuL
2* e22ivt0%#. ~55!
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Then we show that the combinations

uL
22 ie1pmuR

1 , uL
22 ie1pmuR

2* e22ivt0,

uL
12 ie2pmuR

2 , uL
12 ie2pmuR

1* e22ivt0 ~56!

are analytic on the upper half plane and that the correspo
ing combinations

uR
12 ie1pmuL

2 , uR
12 ie1pmuL

1* e22ivt0,

uR
22 ie2pmuL

1 , uR
22 ie2pmuL

2* e22ivt0 ~57!

are analytic on the lower half plane. The analyticity of t
modes~54! follows from the analytic properties of the com
binations~56! and ~57!. Here it is sufficient to focus on the
vicinity of the origin where the left and right modes a
connected. As a consequence of Eqs.~38!, ~46!, and~47!, we
get in terms ofz5kz,

uR
6;

U~z!

A2cv/v0

e2mp/2
27 im

~6 im!!
e2 ivtz6 im11/2,

uL
6~z!5uR

7~2z!. ~58!

Consider the analytic properties ofz im11/2 for an arbitrary
real m. We indicate with a subscript6 whether z im11/2

should be regarded as analytic on the upper~1! or the lower
~2! half plane. With this notation we get

z6
im11/25U~z!z im11/21U~2z!z6

im11/2

5U~z!z im11/21U~2z!~21!6
im11/2

3~2z! im11/2

5Q~z!z im11/21Q~2z!exp@6 ip~ im11/2!#

3~2z! im11/2

5Q~z!z im11/26 ie7pmQ~2z!~2z! im11/2. ~59!

This relation proves the analyticity of the combinations~56!
and ~57! and, as a result, the analyticity of the modes~54!.

However, is the set of modes~54! unique? In principle,
we could perform linear canonical transformations that c
vert the modes~54! into a new set, yet such transformatio
are severely restricted by the required analyticity in sp
and time. For example, we can construct superposition
the vR and vR

' modes to form the new modesvR cosu
1eig vR

' sinu and vR
' cosu2e2ig vRsinu, analogous to the

mode transformation of a beam splitter@34#. Or we may
combine vR with vL* in the Bogoliubov transformation
vR coshj1eig vL* sinhj and vR

' coshj1eig vL* sinhj, analo-
gous to a parametric amplifier@35#. However, only transfor-
mations of this type maintain the analyticity on one of t
half planes of complexz. We are not allowed to combinevR

with vR
'* or vR with vL . Yet the possible mode transforma

tions are further restricted: a Bogoliubov transformati
vR coshj1eig vL* sinhj would generate negative frequenci
on the left side of the horizon. We have argued that this m
04381
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not happen. Similar arguments apply to all other Bogoliub
transformations. Consequently, our modes are uniquely
fined up to superpositions, but such transformations do
change the vacuum state@34#. Therefore, thev modes are
indeed the vacuum modes.

E. Radiation

As a consequence of a slow-light catastrophe, the po
iton field is decomposed into two different sets of mod
The v modes contain the polariton vacuum, whereas thu
andw modes guide the detectable quanta,

ŵ5E ~ âRwR1âR'uR1âLwL1âL'uL1H.c.!dq,

5E ~ b̂RvR1b̂R'vR
'1b̂LvL1b̂L'vL

'1H.c.!dq. ~60!

The â operators are the annihilation operators of the dete
modes and theb̂ operators refer to the vacuum modes. H
denotes the Hermitian conjugate andq are the mode indices
k/k0 . Notice that the vacuum modes contain both positiv
and negative-frequency components, because the set~54! in-
volves complex conjugatew modes. Therefore we expec
that the corresponding operator transformations combine
nihilation with creation operators. This is the decisive si
of pair creation, similar to the production of photon pa
in parametric down-conversion@22#. We representâR as
(wR ,ŵ), âR' as (uR ,ŵ), et cetera, use the normalizatio
~23! and the properties of the scalar product~24!, and arrive
at the Bogoliubov transformations@25#

âR5
1

2
sech~pm!b̂L2 i b̂R1 ie2ivt0

1

2
sech~pm!b̂R

† ,

âR'5
1

A11e2pm
~ b̂R'1 iepmb̂L'! ~61!

and at analogous relations forâL and âL' . Without initial
probe light injected, the dynamically formed slow-light c
tastrophe will cause spontaneous radiation of probe po
tons at a constant rate, because we obtain forv-mode vacua

^âR
†~q1!âR~q2!&5^âL

†~q1!âL~q2!&5n̄d~q12q2! ~62!

with the average particle number

n̄5
1

~epm1e2pm!2 . ~63!

The radiation energy will be taken from the control bea
The initial formation of the horizon is a time-dependent pr
cess that, therefore, transfers energy to the polariton fi
Yet, in addition to an initial brief burst of energy, the contr
beam creates a wave catastrophe that would force polari
into a state they cannot occupy. The frustrated polariton fi
reacts in attempting to alter the parabolic profile of the co
8-9



on
a
si
-

ic
l,
m
de
th

ti
tr
t

un
e

s

di

t a

ce

m
o
e

i-
es
e

na
e

s
e

le
-
e
be

se
th
r-
ol
-

e
We
m
ies.
is
e
l
is-

ow
ical
r-
o a
n-
e, in

e
i-
re-
cts
ere

he

e
-
-
be
t.

0

d
ith

o-
ns.
rol
as
ain.
in-
n
site
du-

dia-

s-
t as

the
iation
ne
ex-
oton

ULF LEONHARDT PHYSICAL REVIEW A 65 043818
trol intensity. This process takes energy away from the c
trol beam and allows the creation of polariton pairs. P
production continues as long as the control beam is not
nificantly depleted. A running wave of control light will pro
duce a steady flow of slow-light quanta.

The slow-light catastrophe generates a maximal part
number per mode, Eq.~63!, of 1/4, which is quite substantia
considering the fact that bright sunlight with a radiation te
perature of 63103 K carries a mere 0.01 photons per mo
in the optical range of the Planck spectrum. However,
photon number~63! is sharply peaked as a function ofm and,
in any case, our pair-production mechanism is restricted
the narrow frequency window of EIT@17#. To maximize the
generated quantum radiation, one should create a situa
where m is near zero over an as large as possible spec
range. In terms of the experimental parameters, we get in
transparency window nearv0 ,

m5
1

2 S d

d0
21D 1/2

, d5
v2v0

v0
,

d05
c2

8a2v0
2 5

1

32p2 S l0

a D 2

. ~64!

Pair production occurs on the blue side of the critical det
ing d0 ~for d.d0! whered0 also determines the width of th
spectrum~63!. The smaller the scalea of the group-index
profile ~30! is, the larger is the critical detuning~64! and
wider is the spectrum~63! of particle production. Equation
~2! and ~16! indicate that the scalea is small for a steep
group-velocity profile created by a large control-field gra
ent. Gravitational black holes show a similar behavior@10#.
The smaller the hole is, the larger is the gravity gradien
the horizon and stronger is the Hawking radiation@10# gen-
erated. Returning to our case, the parameter dependen
the particle-number spectrum~63! underlines the crucial role
of a spatially varying group velocity in creating a quantu
catastrophe. A mere zero of the group velocity would n
suffice to produce a measurable radiation. The control-fi
gradient matters.

Close to the horizon the susceptibility of slow light d
verges. Yet Nature tends to prevent infinite susceptibiliti
Instead of responding infinitely strongly, optical media b
come absorptive or nonlinear. Considering gravitatio
black holes, Nature could prevent the existence of true ev
horizons as well. Here waves are supposed to shrink
wavelengths beyond the Planck scale where the physic
unknown. Hawking radiation seems to stem from these
tremely shortened waves. This trans-Planckian problem@36#
was analyzed in theoretical toy models of sonic black ho
in moving fluids@37,38#. Here the interatomic distance pro
vides a natural cutoff for extremely shortened sound wav
Nevertheless@38#, the mere threat of a horizon seems to
sufficient for generating Hawking sound.

Returning to slow light, an EIT medium in linear respon
is transparent within a narrow spectral window around
resonance frequencyv0 . The spectral width of the transpa
ency window is proportional to the intensity of the contr
beam @17#. Therefore, slow-light waves oscillating at fre
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quencies different fromv0 are absorbed near a node of th
control field, unless the medium becomes nonlinear.
show in Appendix A that the nonlinearity of the EIT mediu
depends on the ratio of the probe and control intensit
According to the linear optics of slow light discussed in th
paper, the probe intensity is proportional to the distancz
from the horizon, as long askz is small, whereas the contro
intensity grows quadratically. Consequently, at a certain d
tancez0 both fields are comparable in strength. Here sl
light leaves the regime of linear response. In a semiclass
concept of light@39,40# quantum fluctuations are small pe
turbations of the classical amplitude and are subject t
linear theory. If the vacuum state of light is classically u
stable, photons are created spontaneously. For exampl
parametric down-conversion@22# quantum fluctuations are
amplified@39#, generating photon pairs. The instability of th
linear optics near a slow-light horizon may provide the m
croscopic mechanism for the pair production we have p
dicted phenomenologically. However, the nonlinear effe
of the EIT medium are required to dominate at a stage wh
the absorption is still small. We show in Appendix B that t
probe intensity is proportional to the detuningd0 given by
Eq. ~64! in terms of the characteristic scale~30! of the group-
index profile~2!. Therefore, the ratio of the control and prob
intensities does not depend ona, and, consequently, the non
linearity distancez0 is independent of the control-field gra
dient. In order to avoid absorption the control should
strong enough atz0 , which requires a steep field gradien
Using the experimental parameters of Refs.@13,15#, the Rabi
frequency@22# of the control field should grow at least by 1
MHz per wavelengthl0 away from the horizon, as we show
in Appendix B. In this case the scalea5(53103)l0 and the
critical detuningd0510210. Appendix B indicates that a
large number~of the order of 106! of photons are generate
per second, amounting to a gentle glow perhaps visible w
the naked eye.

IV. SUMMARY

Tuning the control field towards a parabolic intensity pr
file causes a catastrophic situation for slow-light polarito
In turn, the polariton field sets out to deplete the cont
beam, in an attempt to alter the intensity profile that h
caused the wave catastrophe in the first place, yet in v
The control beam continuously replenishes the parabolic
tensity profile, driving a stationary production of polarito
pairs. The two polaritons of each pair are created on oppo
sides near the horizon, they depart slowly, accelerate gra
ally, and emerge as detectable photons. The Hawking ra
tion of a black hole@10# follows a similar scenario@8#. Here
the gravitational collapse@7# has triggered a quantum cata
trophe at the event horizon, causing pair creation to las
long as the hole possesses gravitational energy@8,10#. One
particle of each pair falls into the black hole, whereas
other escapes into space and appears as thermal rad
@10#. In our case, and in contrast to gravitational holes, o
can explore the other side beyond the horizon and, for
ample, measure the correlations of the generated ph
8-10
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pairs. Both cases are triggered by catastrophic events
lasting consequences.

The quantum radiation of a slow-light catastrophe
sembles Hawking radiation, but exhibits some interest
differences also. The emitted spectrum~63! is not Planckian,
whereas a black hole of Schwarzschild radiusr s appears as a
black-body radiator with temperature\c/(4pr s) @10#. The
differences between the two spectra can be traced bac
two different classes of wave catastrophes. In both ca
waves freeze at a horizon in the formzp with an exponent
im11/2 for slow-light media but with an exponentim for
black holes wherem52pr sv/c @8#. Note that Unruh’s effect
@9# of radiation seen by an accelerated observer is of
Hawking class as well@8# and so are most of the propose
artificial black holes @24,37,38,41–43#. Remarkably,
Schwinger’s pair production of charged particles in elect
static fields@44# is accompanied by a subtle wave catast
phe of exponentim21/2 @8# and leads to a Boltzmannia
spectrumn̄5exp(22pm). All three catastrophes agree in th
limit of large m but deviate significantly in the regime o
maximal particle production wherem is small. It might be
interesting to find out whether more than three types of qu
tum catastrophes can occur.
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APPENDIX A: DARK-STATE DYNAMICS

In this appendix we consider the microscopic theory
the atoms constituting an EIT medium. We derive the wa
equation~5! as the linear-response limit of the nonlinear d
namics of slow light. Assume that the EIT medium consi
of nA identical atoms per unit volume, each one equipp
with three levels interacting almost resonantly with the pro
and control fields, respectively, see Fig. 3.

We treat light as a classical electromagnetic field.
atom is characterized by the energy-level differences\v12
and\v23 with v121v235v13[v0 . Typically, the transition
frequenciesv13 andv23 are in the optical range of the spe

FIG. 3. Three-level atom in a regime of electomagnetically
duced transparency. The control beam couples the levels 2 an
which influences strongly the optical properties of the atom fo
weaker probe beam tuned to the transition 1↔3.
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trum or in the near infrared (1015 Hz), whereas the fre-
quencyv12 is much lower (109 Hz). The atom is subject to
fast relaxation mechanisms (106 Hz) that transport atomic
excitations from theu3& state down tou1& and fromu3& to u2&,
mainly caused by spontaneous emission. Hardly any exc
tions move fromu2& to u1&, because the spontaneous emiss
rate is proportional to the cube of the frequency@45#. Here
the relaxation may be dominated by other processes, for
stance, by spin-exchanging collisions. Without relaxation
dynamics of the atom is governed by the Hamiltonian

Ĥ5F 0 0 2
1

2
k13Ep

~2 !

0 \v12 2
1

2
k23Ec

~2 !

2
1

2
k13Ep

~1 ! 2
1

2
k23Ec

~1 ! \v13

G .

~A1!

The Hamiltonian represents the atomic level structure
describes the dipole interaction with light, considering he
only the positive-/negative-frequency componentsEp

(6) and
Ec

(6) that match approximately the level structure. TheEp

and Ec fields are the probe and control light, respective
and are given in SI units. We describe relaxation pheno
enologically by the transition processes

Â15u1&^3u, Â25u2&^3u, ~A2!

occurring at the ratesg1 andg2 , typically a few 106 Hz. The
density matrix of the atom,r̂, evolves according to the mas
ter equation@46#

dr̂

dt
5

i

\
@r̂,Ĥ#2(

l
g l~Âl

†Âl r̂22Âl r̂Âl
†1 r̂Âl

†Âl !.

~A3!

It is advantageous to represent the light fields in terms
Rabi frequencies

Vce
2 ivct5

k23

\
Ec

~1 ! , Vpe2 iv0t5
k13

\
Ep

~1 ! ~A4!

defined here with respect to the atomic transition frequen
vc5v23 andv05v13. In the absence of relaxation, an ato
would oscillate between the ground and the excited s
with frequencyV ~Rabi flopping@22#!. On the other hand
relaxation leads to a stationary state where the atomic dip
follow the fields.

Assume that the control beam is in exact resonancevc
and that the probe light is monochromatic with a small d
tuning v2v0 . Furthermore, the Rabi frequency of the co
trol beam shall dominate all relevant time scales,

uVcu@uVpu,g1 ,g2 ,uv2vcu. ~A5!

In this limit the stationary state of the atomic evolution~A3!
turns out to approach the pure state

-
3,

a
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r̂5uc0&^c0u,

uc0&5Û0N0S u1&2
Vp

Vc
u2&1

2~v2v0!

uVcu2 Vpu3& D , ~A6!

which is called a dark state@17#. Here we have separated th
rapid oscillations of the atom at the optical transition fr
quencies from the slower atomic dynamics,

Û05F 1 0 0

0 e2 iv12t 0

0 0 e2 iv0t
G . ~A7!

Suppose that a dominant and monochromatic control b
has, after relaxation, prepared the atom in the stationary s
~A6!. How will the atom evolve when the control and prob
strengths vary? First we show that the atom remains in a p
state, as long as theu3& component is small,

r335^3ur̂u3&!1. ~A8!

Consider the statistical purity tr(r̂2). A quantum system is in
a pure state if and only if the purity is unity@46#. We apply
the master equation~A3! and see that the purity does n
change significantly,

dtr$r̂2%52tr$r̂dr̂%54@g1~12r11!1g2~12r22!#r33dt,

~A9!

once the atom has occupied a pure state with sparsely p
lated levelu3&. Consequently, we can describe the state of
atom by a vectoruc&.

Suppose that the control and the probe strengths v
How does a dark state follow the light? In the case~A8! the
state vector is dominated by its components in the subsp
spanned by the two lower levelsu1& and u2&. If we find a
vector uc& that describes correctly the dynamics~A3! in this
subspace, the third component^3uc& must be correct as well
to leading order inr33. The lower ranks enslave the to
level. Since the relaxation processes~A3! do not operate
within the lower subspace, we can ignore dissipation entir
to find the dominant state of the atom. We write down t
state vector

uc&5Û0NS u1&2
Vp

Vc
u2&1

2N0
2

Vc*
i ] t

Vp

Vc
u3& D ~A10!

with the abbreviations

Vp

Vc
5UVp

Vc
Ueiu,

N05S 11
uVpu2

uVcu2
D 21/2

,

N5N0 expS 2 i E uVpu2du

uVpu21uVcu2
D . ~A11!
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In a stationary regime under the condition~A5! the vector
~A10! agrees with the dark state~A6!. We see from the prop-
erties

] tN52NN0
2

Vp*

Vc*
] t

Vp

Vc
, ] tN

Vp

Vc
5NN0

2] t

Vp

Vc
~A12!

that uc& satisfies the differential equation

i\] tuc&5Ĥuc&1 i\] t^3uc&u3&. ~A13!

Consequently, the vector~A10! describes correctly the dy
namics of the atom in the lower-level subspace. Therefo
the atom remains in the dark state~A10!, as long as the
atom’s evolution does not leads to an overpopulation at
top level u3&. The initial relaxation-dominated regime ha
prepared the dark state, but later the atom follows dyna
cally without relaxation@19#.

In response to the light fields, the evolving atoms con
tute a macroscopic dipole density called the matter polar
tion PA . Consider a one-dimensional model for light prop
gation. The matter polarization influences the probe lig
according to the wave equation

~] t
22c2]z

2!E52«0
21] t

2PA . ~A14!

Each atom generates a dipole moment ofk13tr$r̂u1&^3u%/2,
oscillating at positive frequencies, that contributes to the
tal dipole density. Therefore, a medium withnA atoms per
volume generates a matter polarization with the positi
frequency component

PA
~1 !5

nA

2
k13̂ 3uc&^cu1&5

nA

2
k13e

2 iv0tN0
4 2

Vc*
i ] t

Vp

Vc

5nA

k13
2

\

N0
4

uVcu2
S i ] t2v02 i

~] tuVcu!
uVcu

1 u̇cDEp
~1 ! ,

~A15!

where uc5argVc . Assume, for simplicity, thatVc is real.
Otherwise, we can easily incorporate the phaseuc of the
control field in the phase of the electric field without affec
ing the wave equation~A14!, as long asuc varies slowly
compared with the optical frequencyv0 . We define

a5nA

k13
2

2«0\

v0

uVcu2 5
nA

2

k13
2

k12
2

\v0

«0uEcu2
, ~A16!

which, as we will see shortly, is the group index~2!. We get

«0
21] t

2P~1 !'2N0
4a2v0S i ] t2v02 i

ȧ

2a DEp
~1 !

~A17!

and approximate
8-12
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2v0~ i ] t2v0!Ep
~1 !'~ i ] t1v0!~ i ] t2v0!Ep

~1 !

52~] t
21v0

2!Ep
~1 ! . ~A18!

In this way we obtain from the general wave equation~A14!
an equation that is valid for both the positive and the ne
tive frequency component of the probe light,

@] t
22c2]z

21N0
4~] ta] t1av0

2!#Ep50. ~A19!

The dark-state dynamics may lead to a nonlinear satura
of the medium, described by theN0

4 factor in the wave equa
tion ~A19!. The nonlinearity is relevant when the Rabi fr
quenciesuVpu and uVcu are comparable. When the probe
significantly weaker than the control light, the medium r
sponds linearly,

@] t~11a!] t2c2]z
21av0

2#Ep50. ~A20!

We have derived the wave equation~5!. The group index
~A16! determines the group velocityvg5c/(11a). Re-
markably, the lower the intensity of the control beam is,
slower the probe light becomes. Taken to the extreme, l
freezes when the control light is switched off—a paradoxi
behavior that is only possible in a dynamical regime@19#: a
control beam of moderate intensity first captures the pr
light, slowing it down, and then, by ramping down the co
trol intensity, freezes the probe pulse. Equally paradoxica
the nonlinearity of the EIT medium is stronger, the weak
the control beam is. We show in Appendix B that the unus
nonlinear optics in an EIT medium matters in a slow-lig
catastrophe.

APPENDIX B: ESTIMATIONS

In this appendix we estimate the effect of a slow-lig
catastrophe, using the experimental parameters of Refs.@13#,
@15#. We calculate the photon flux in the far field and es
mate the intensity near the horizon. In order to detect exp
mentally the quantum radiation of the catastrophe, the
should be sufficiently strong. Close to the horizon, ev
slightly detuned slow light leaves the absorptionless tra
parency window of EIT, unless the medium becomes non
ear. The intensity near the horizon determines whether
nonlinearity or the absorption dominates.

First we generalize our one-dimensional model of
slow-light catastrophe to the three dimensions of space
Cartesian coordinatesx5(x,y,z). The spatial profile of the
group index shall be uniform inx and y and parabolic inz
with the scalea. The propagation of slow light is governe
by the wave equation

F] t
22c2¹21

a2

z2 ~] t
21v0

2!Gw50. ~B1!

We find the stationary solutions and normalize them acco
ing to the scalar product

~w1 ,w2!5 i E ~w1* ] tw22w2] tw1* !S 11
a2

z2 Dd3x. ~B2!
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We obtain the set of modes~50! with

uR
65

U~z!

l0A2c
e2pm/2Ak0zJ6 im~kzz!exp~ ikxx1 ikyy2 ivt !,

uL
6~x!5uR

7~2x!,

wR
65

1

A12e22pm
~uR

62e2pmuR
7!,

wL
6~x!5wR

7~2x!, ~B3!

and l052p/k0 and k05v0 /c. Armed with the three-
dimensional modes, we turn to calculating the energy fl
The Poynting vector of light is the time-averaged expectat
value of the normally ordered Poynting operator@22#

P5 lim
T→`

1

2T E
2T

1T

^:2\c2~] tŵ !~“ŵ !:&dt

52\c2E E ^:ẇ1“w2* â1â2
†1ẇ1*“w2â1

†â2 :&d3q1d3q2

52\c2E ~ẇ“w* 1ẇ*“w!n̄d3q

5\cE 2v2quwu2n̄d3q. ~B4!

In the last step we have utilized the fact that thew modes
approach plane waves~51! far away from the horizon. In
view of the narrow bandwidth of EIT we can replacev by
the resonance frequencyv0 . Consider a radiating surfac
with areaA observed from the distancer under the angleq.
The range of wave vectors contributing to the flux~B4! is
restricted to lie within the solid angle of the surfac
A cosq/r2. In the line of sight we thus get the Poynting
vector component

P5\w0

A cosq

r 2 2cv0E uwu2n̄dq

5\v0

A cosq

r 2 v0

3E 12e22pm

2p
~epm1e2pm!22dq, ~B5!

having applied the asymptotics~51!. We employm as the
integration variable, withm(]m/]q)5a2k0

2, and obtain in
terms of the critical detuning~64! the photon flux
8-13
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P

\v0
5

A cosq

r 2l0
2 v0d0

3
4

p E
0

`

~12e22pm!~epm1e2pm!22mdm

5
A cosq

r 2l0
2 v0d0h0 ,

h05
2

p3 S ln 22
p2

24D . ~B6!

The flux integrated over the two half spheres around
radiating surface gives the total photon-production rate

N54pE
0

p/2 Pr2

\v0
sinqdq5

A

l0
2

v0d02ph0 . ~B7!

For light in the optical spectral range, 2pv0h0 is about 4
31014 Hz. Assuming a critical detuningd0 of 10210 a sur-
face of 102l0 could generate a large number (;106) of pho-
tons per second. Usually a photodetector captures on
small solid angle of the radiation emitted from a localiz
source, and a detector is not perfectly efficient in counting
photons. Yet the radiation of the slow-light catastrop
seems to be strong enough to be detectable.

Let us estimate the strength of the control field needed
generate the flux we have calculated. We calibrate the fi
strength in terms of a Rabi frequency~A4!. According to Eq.
~64!, a critical detuningd0 of 10210 corresponds to a lengt
scalea'(53103)l0 of the group-index profile~30!. In the
experiment of@13# a group index of 107 is generated by a
control field with Rabi frequencyVc5(2.5732p) MHz
'16 MHz. The group index is inversely proportional toVc

2,
which leads to a Rabi frequencyVc of about (5
3104Aa) MHz. For the profile~30! of our slow-light catas-
trophe we find thatVc should grow linearly by 10 MHz pe
wavelength distance away from the horizon,

Vc510
z

l0
MHz. ~B8!

Probably 10–100 wavelengths are sufficient to establish
wave catastrophe. This would take a continuous-wave c
trol field with a maximal Rabi frequency of 102– 103 MHz.
t-
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The ratioVp /Vc of the Rabi frequencies~A4! determines
whether nonlinear effects dominate near the horizon. We
culate Vp using the results of the linear theory. Strict
speaking, Rabi frequencies refer to classical fields. Here
regard the time-averaged and normally ordered expecta
value of the quantum intensityÊp

2 as being proportional to
Vp

2. Comparing Eq.~1! of Ref. @15# with our Eq.~A16! we
find a relation between the Rabi frequency and the intens

Vp
25~33103!K «0Êp

2

\v0
L m3 Hz2, ~B9!

for the atomic transition employed in the experiments
Refs. @13#, @15#. We expressÊp in terms of the fieldŵ in
units of the vacuum noise, and get

K «0Êp
2

\v0
L 5 lim

T→`

1

2T E
2T

1T

v0^:ŵ
2:&dt52v0E uwu2n̄d3q.

~B10!

Close to the horizon thew waves obey the asymptotics

uwu2;
k0z

2cl0
2

12e2pm

11e2pm e2pm
sinh~pm!

pm
, ~B11!

as we find from the definition~B3! and the behavior~38! of
the Bessel functions, utilizing Eq. 1.2.~6! of Ref. @33# for the
gamma functionx![G(x11). We obtain

K «0Êp
2

\v0
L 52v02pE

0

`

uwu2n̄
m

a2k0
2 dm532p~12 ln 2!d0

z

l0
4

~B12!

and, consequently,

Vp;8.6A z

l0
MHz. ~B13!

Therefore, the Rabi frequenciesVp andVc are comparable
at a distance of about half a wavelength away from the
rizon. Here a critical detuning of 10210 lies still within the
transparency window generated by a control field of 5 M
Rabi frequency. The EIT medium becomes nonlinear.
.
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